.. e (Whatever is, is right, An Essay on Man, 1732-34) it is hard to see any useful role of the basophil/mast cell in human physiology.

The mast cell is the essential effector of immediate (Type 1) hypersensitivity reactions, which produce only misery, dysfunction, and occasionally death for the hapless host. E. Lymphocytes In the immune/inflammatory response, if the neutrophils and monocytes are the brutes, the lymphocytes are the brains.It is possible to observe the horror of life without lymphocyte function by studying the unfortunate few with hereditary, X-linked, severe combined immune deficiency. Such individuals uniformly die of systemic infections at an early age (except for the bubble boys of yesteryear, who lived out their short lives in antiseptic prisons).

The functions of lymphocytes are so diverse and complex that they are beyond the scope of this text (and the scope of the author, it must be admitted). What follows are a few general remarks concerning examination of lymphocytes in peripheral blood. After neutrophils, lymphocytes are the most numerous of the circulating leukocytes.The normal range of the lymphocyte count is 1000 - 4800/L. Their life span may vary from several days to a lifetime (as for memory lymphocytes). Unlike neutrophils, monocytes, and eosinophils, the lymphocytes 1) can move back and forth between the vessels and the extravascular tissues, 2) are capable of reverting to blast-like cells, and 3) when so transformed, can multiply as the immunologic need arises.

In normal people, most of lymphocytes are small, innocent-looking round cells with heavily painted-on nuclear chromatin, scant watery cytoplasm, and no granules. A small proportion of normal lymphs are larger and have more opaque, busy-looking cytoplasm and slightly irregular nuclei.Some of these have a few large, dark blue granules, the so called azurophilic granules. It has been maintained that these granulated cells are T-gamma cells (i.e., T-cells that have a surface receptor for the IgG Fc region) or natural killer (NK) null-cells.

Other phenotypes of lymphocytes are not recognizable as such on the routine, Wright-stained smear and require special techniques for identification. When activated by whatever means, lymphocytes can become very large (approaching or exceeding the diameter of monocytes) and basophilic (reflecting the increased amount of synthesized cytoplasmic RNA and protein). The cytoplasm becomes finely granular (reflecting increased numbers of organelles), and the nuclear chromatin becomes less clumped (the better to transcribe you with, my dear!).Such cells are called transformed lymphocytes, atypical lymphocytes, or viral lymphocytes by various votaries of blood smears.

Although such cells are classically associated with viral infection (particularly infectious mononucleosis), they may also be seen in bacterial and other infections and in allergic conditions. A morphologic pitfall is mistaking them for monocytes (a harmless mistake) or leukemic blasts (not so harmless). Platelets The main thing to remember about platelets is to look for them first! A typical tyro maneuver is to study a blood smear for an hour looking for some profound hematological abnormality, never to realize there is nary a platelet in sight. It is therefore necessary to discipline yourself to first check for a normal number of platelets when sitting down with a slide, before being seduced by the midnight beauty of the basophil's alluring granules or the monocyte's monolithic sovereignty.

The normal platelet count is 133 - 333 x 103/L.Platelets are counted by machine in most hospital labs and by direct phase microscopy in smaller facilities. Since platelets are easily mistaken for garbage (and vice versa) by both techniques, the platelet count is probably the most inaccurate of all the routinely measured hematologic parameters. Actually, you can estimate the platelet count fairly accurately (up to an absolute value of about 500 x 103/L) by multiplying the average number of platelets per oil immersion field by a factor of 20,000. For instance, an average of ten platelets per oil immersion field (derived from the counting of ten fields) would translate to 200,000/L (10 x 20,000). Abnormal bleeding generally does not occur unless the platelet count is less than 30,000/L, if the platelets are functioning properly.

Screening for proper platelet function is accomplished by use of the bleeding time test. Other cells in peripheral blood Plasma cells sometimes appear in the peripheral blood in states characterized by reactivity of lymphocytes.Old time hematologists often maintain that the cells that look exactly like plasma cells on the smear are really plasmacytoid lymphs, and it is usually nonproductive to argue this point with them. Endothelial cells occasionally get scooped up into the phlebotomy needle during blood collection and show up on the slide.

They are huge and tend to be present in groups. Histiocytes, complete with pseudopodia and phagocytic vacuoles, may appear in states of extreme reactivity, especially in septic neonates. Nucleated red cells may also be seen in small numbers in the peripheral blood of newborns; however, in adults, even a single nucleated rbc on the slide is abnormal, indicating some sort of serious marrow stress, from hemolytic anemia to metastatic cancer. Myeloblasts are always abnormal and usually indicate leukemia or an allied neoplastic disease.

Rarely they may be seen in non-neoplastic conditions, such as recovery from marrow shutdown (aplasia). Later stages of myeloid development (promyelocyte, myelocyte, metamyelocyte) may be represented in the peripheral blood in both reactive states and leukemias. Bone marrow examination This is one of the most common biopsy procedures performed on both outpatients and the hospitalized. Two types of specimens are generally obtained, the aspirate and the core biopsy.

The site of biopsy is usually the posterior iliac crest (via the posterior superior iliac spine) in adults and the anterior tibia in children, although other sites are available.After local anesthesia is applied to the periosteum and overlying skin, a small needle (usually the University of Illinois needle) is introduced (or crunched actually) into the medullary space through a small skin incision. About 0.5 mL of marrow material is aspirated and smeared onto several glass slides and stained with a stain identical or similar to the Wright stain used on peripheral blood. Some material usually remains in the syringe where it is allowed to clot.

It is then fished out of the syringe, processed like all other biopsy tissue, embedded in paraffin, sectioned, and stained with hematoxylin/eosin and other selected stains. The core biopsy, generally performed after the aspirate is done, is taken with a larger, tapered needle, typically the Jamshidi needle. This yields a core of bone (similar to a geologic core sample) which is fixed, decalcified, processed, and sectioned.The H&E-stained core biopsy and aspirate clot sections are best for assessment of marrow cellularity and the presence of metastatic neoplasms or granulomas. The Wright-stained aspirate smears are best for studying the detailed cytology of hematopoietic cells.

The bone marrow biopsy procedure produces some pain for the patient, since it is impossible to anesthetize the inside of bone. The level of pain ranges from mild discomfort to agony, depending on the individual's pain threshold and level of apprehension. Some physicians elect to precede the biopsy with a benzodiazepine or other minor tranquilizer. Generally the aspiration action produces much more pain than the core biopsy.

For a procedure that involves invasion of bone, the marrow biopsy is remarkably free of complications. Bleeding and infection may occur but are rare, even in severely thrombocytopenic and immunosuppressed patients. It is highly recommended that med students learn how to perform this useful procedure during the clinical years of their training.