Is the neural pathway significantly longer for a visual stimulus or a sound stimulus (or a pressure stimulus) Data collection and processing Table 1a: Data collected by John Rha and Arthur Hamilton by dropping ruler for calculation of length of the neural pathways (Visual, Auditory and Sensual) Trial#| Visual| Auditory(Sound)| Sensual(Pressure)| | (cm±0. 1cm)| (cm±0. 1cm)| (cm±0. 1cm)| | John| Arthur| John| Arthur| John| Arthur| 1| 43. 9| 24. 1| 33. 1| 34. 6| 50. 1| 50. 5| 2| 73. 7| 45. 6| 66. 1| 49. 2| 29. 2| 75. 2| 3| 47. 4| 31| 80. 2| 25. 3| 54. 4| 41| 4| 32| 24. 7| 23. 1| 39. 6| 25. 6| 47. 4| 5| 23. 5| 29. | 32. 9| 35. 1| 26. 2| 30. 8| 6| 38. 6| 27. 6| 47. 6| 34. 7| 40. 6| 49. 5| 7| 37. 9| 20. 9| 56| 21. 7| 41. 5| 40. 2| 8| 28. 2| 22. 7| 24| 57| 29. 1| 62| 9| 39. 9| 62| 43. 6| 87. 2| 30. 6| 35. 4| 10| 23. 6| 30. 5| 49. 3| 44. 4| 44. 2| 78. 2| 11| 58. 4| 26. 2| 66. 8| 24. 2| 41. 9| 84. 3| 12| 40| 32. 7| 21. 1| 36. 1| 14. 2| 21| 13| 55. 5| 20. 2| 61. 7| 15. 1| 61| 41. 3| 14| 39. 6| 32. 2| 46. 9| 28. 58| 65| 24. 8| 15| 46. 1| 18. 1| 61. 7| 55| 45. 9| 22. 3| Table 1b: Calculations of the reaction times the meter stick fell Trial#| Visual| Auditory(Sound)| Sensual(Pressure)| | John| Arthur| John| Arthur| John| Arthur| | 0. 299319| 0. 221774| 0. 259906| 0. 26573| 0. 319758| 0. 321032| 2| 0. 387825| 0. 305059| 0. 367285| 0. 316872| 0. 244114| 0. 391752| 3| 0. 311022| 0. 251526| 0. 404566| 0. 227228| 0. 333197| 0. 289264| 4| 0. 255551| 0. 224518| 0. 217124| 0. 284282| 0. 228571| 0. 311022| 5| 0. 218996| 0. 243696| 0. 259119| 0. 267643| 0. 231234| 0. 250713| 6| 0. 28067| 0. 237332| 0. 311677| 0. 266113| 0. 287849| 0. 317837| 7| 0. 278113| 0. 206526| 0. 338062| 0. 210442| 0. 291022| 0. 286428| 8| 0. 239898| 0. 215236| 0. 221313| 0. 341067| 0. 243696| 0. 355711| 9| 0. 285357| 0. 355711| 0. 298294| 0. 421852| 0. 249898| 0. 68784| 10| 0. 219461| 0. 249489| 0. 317194| 0. 301019| 0. 30034| 0. 399489| 11| 0. 34523| 0. 231234| 0. 369224| 0. 222234| 0. 292421| 0. 414778| 12| 0. 285714| 0. 258331| 0. 207512| 0. 271429| 0. 170234| 0. 20702| 13| 0. 336549| 0. 203038| 0. 35485| 0. 175546| 0. 352831| 0. 29032| 14| 0. 284282| 0. 256348| 0. 309377| 0. 241509| 0. 364216| 0. 224972| 15| 0. 306727| 0. 192195| 0. 35485| 0. 33503| 0. 306061| 0. 213331| Table 1c: Calculations of the length (distance) of neural pathway Trial#| Visual| Auditory(Sound)| Sensual(Pressure)| | John| Arthur| John| Arthur| John| Arthur| 1| 2993. 19| 2217. 739| 2599. 58| 2657. 296| 3197. 576| 3210. 315| 2| 3878. 249| 3050. 594| 3672. 846| 3168. 725| 2441. 144| 3917. 517| 3| 3110. 22| 2515. 26| 4045. 658| 2272. 282| 3331. 973| 2892. 637| 4| 2555. 506| 2245. 176| 2171. 241| 2842. 821| 2285. 714| 3110. 22| 5| 2189. 959| 2436. 96| 2591. 194| 2676. 428| 2312. 345| 2507. 133| 6| 2806. 698| 2373. 321| 3116. 775| 2661. 134| 2878. 492| 3178. 371| 7| 2781. 132| 2065. 262| 3380. 617| 2104. 417| 2910. 221| 2864. 277| 8| 2398. 979| 2152. 36| 2213. 133| 3410. 668| 2436. 96| 3557. 114| 9| 2853. 569| 3557. 114| 2982. 945| 4218. 521| 2498. 979| 2687. 841| 10| 2194. 613| 2494. 93| 3171. 943| 3010. 187| 3003. 399| 3994. 895| 11| 3452. 299| 2312. 345| 3692. 242| 2222. 336| 2924. 213| 4147. 78| 12| 2857. 143| 2583. 306| 2075. 12| 2714. 286| 1702. 339| 2070. 197| 13| 3365. 491| 2030. 381| 3548. 498| 1755. 458| 3528. 311| 2903. 2| 14| 2842. 821| 2563. 48| 3093. 773| 2415. 089| 3642. 157| 2249. 717| 15| 3067. 273| 1921. 946| 3548. 498| 3350. 297| 3060. 612| 2133. 312| Table 2a: Average distance of neural pathway Trial#| Visual| Auditory(Sound)| Sensual(Pressure)| | John| Arthur| John| Arthur| John| Arthur| | 2889. 8| 2434. 7| 3060. 2| 2765. 3| 2810. 3| 3028. 3| Conclusion and evaluation
The objective of this experiment was to determine the distances of neural pathways and to discover if there are any significant differences between Visual, Auditory and Sensual neural pathway distances. The distance of each neural pathway includes and displays the following procedures. Ex) Visual stimulus: First, your eye sees the ruler. Then, your eye sends a message to the visual, stimulus cortex, which sends a message to the motor cortex. The motor cortex sends a message to the spinal cord. The spinal cord sends a message to the muscles in your hand and fingers. Finally, your muscles contract to allow you to catch the ruler.
John’s data shows that there were no significant differences. However, Arthur’s data shows that the neural pathway for pressure stimulus is significantly longer than the pathway for visual stimulus. This is shown by the calculated pathway length and the t-test performed. Calculation: The algorithm to calculate the reaction speed is d = vt + ? at? where d = distance in meters v = initial velocity = 0 a = acceleration due to gravity = 9. 81m/s? t = time in seconds We need to manipulate d = vt + ? at? to give us an algorithm for t As v = 0 then vt = 0 therefore the algorithm is t = sqrt(2d/a) Example d = 43. 9cm = sqrt((2 ? 43. 9 ? 9. 8)) t = 0. 299 seconds (sigfig) 0. 299319*10000(m to cm)=2993. 2cm or 29. 932m The calculated distance for Arthur’s Visual stimulus was 2434. 7cm, which was much shorter than the pressure stimulus length of 3028. 3cm or the auditory stimulus length of 2765. 3cm. The t-tests performed showed that there were no significant differences for John’s data, but Arthur’s data showed that the three sets of data were all significantly different. One huge weakness of this lab was that John and Arthur’s hands were not the same distance away from the ruler for every trial. This could have led to incorrect data ollection. There was another weakness when we were collecting the pressure stimulus, because the ruler fell more slowly due to the friction between the palm and the ruler, giving the appearance of a faster reaction time. Also, the auditory reaction time was higher than the visual reaction time because the voice of the other person was not perfectly in time. Another reason for this is that it had lots of variability when the person commanded the other person to “Go! ” Our group could have attached another ruler on the sidewall to ensure a constant distance between the hand and the dropping point.
Therefore, to improve this lab, we have to keep the distance between the hand and ruler constant for all trials. Also, when the person says “Go! ” it also takes reaction time from his brain to his fingers to drop the ruler and from his brain to his oral muscles to speak “Go! ” Therefore, to improve this lab, we need to use an electronic device that can automatically drop the ruler with a short “beep” sound. To decrease friction, we need to use a simple grabbing tool like tweezers instead of just grabbing with our hand, which creates sliding or friction depending on the hand’s condition (wet or dry).